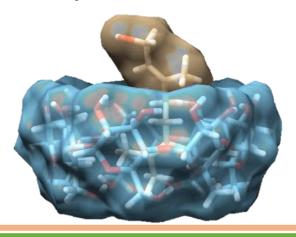


Centro Interdipartimentale
Grandi Strumenti
CINQUANTA

Applicazioni NMR
per il controllo
qualità di alimenti e
caratterizzazione di
matrici complesse

Eleonora Truzzi, PhD



NOESY Tempi di rilassamento

Determinazione peso molecolare polimeri

DOSY

Controllo qualità integratori alimentari - qNMR

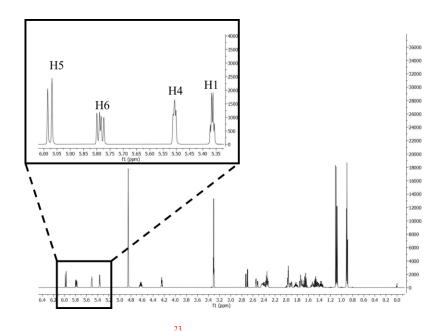
Mercato in costante crescita \rightarrow adulterazione e contraffazione per lucro.

La legislazione degli integratori alimentari non richiede controlli di qualità stringenti \rightarrow il titolo dei principi attivi può non essere conforme a quanto dichiarato in etichetta

Fonte: Area Studi Mediobanca su dati Federsalus

Riso rosso fermentato

Allegato III della Direttiva Europea No 1925/2006 è stato modificato a giugno 2022 per diminuire il dosaggio di monacolina K da 10 mg/die a < 3 mg/die

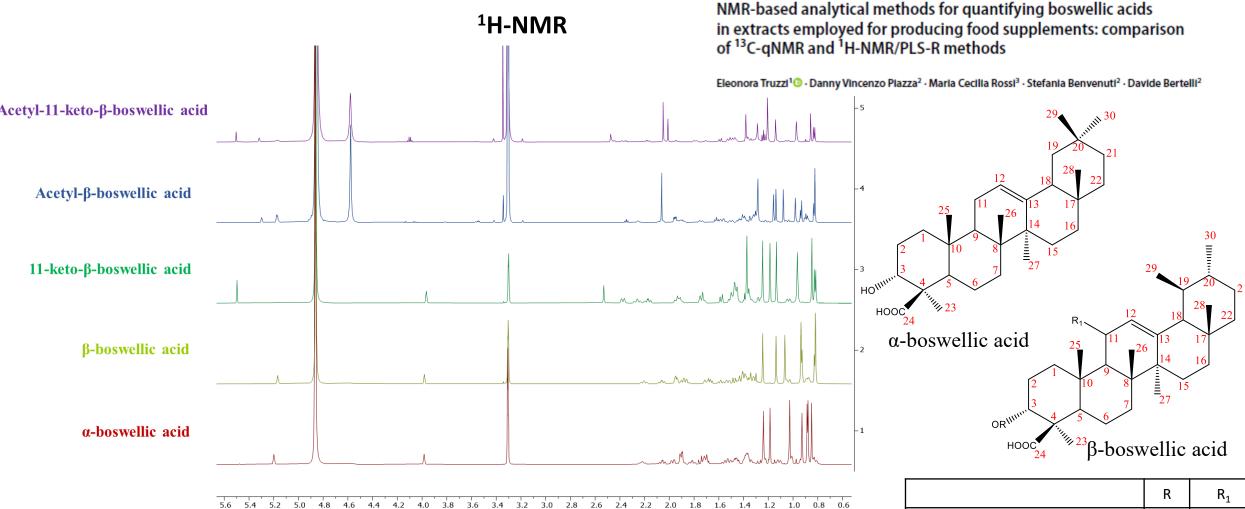

Boswellia serrata

Gli estratti prodotti in paesi asiatici sono titolati mediante metodi non selettivi \rightarrow sovrastima del contenuto di BAs

Controllo qualità integratori alimentari - qNMR

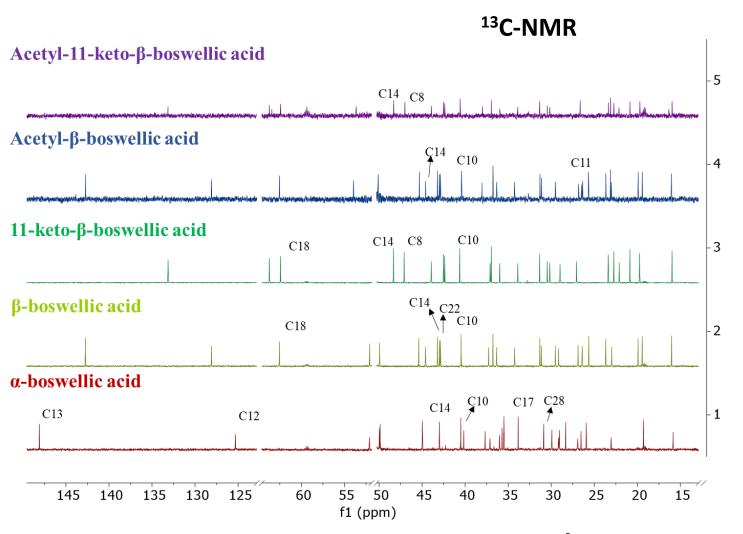
Metodi cromatografici richiedono l'utilizzo di standard costosi, curve di taratura e analisi lunghe → qNMR metodo ERETIC usando piridossina 10 mM come standard esterno.

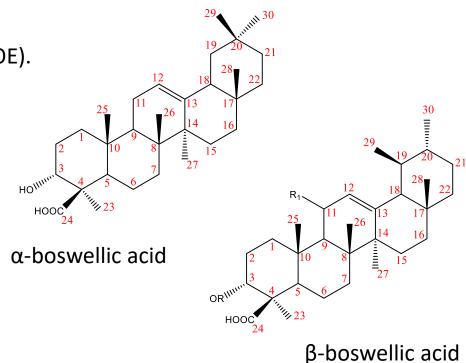
monacolina K


- Segnali selezionati per la quantitativa sono ben risolti e non sovrapposti a quelli di altri analiti;
- Tempi di rilassamento brevi → rapida acquisizione dello spettro ¹H-NMR (7 min) con D1 di 10 sec (5xT1).

Sample	Target molecule	Compound measured per dosage unit	Compound declared per dosage unit
FS1	Monacolin K	n.d.	< 2.9 mg
FS2	Monacolin K	n.d.	< 2.9 mg
FS3	Monacolin K	2.14 ± 0.04 mg (CV% 1.86)	< 2.9 mg
FS4	Monacolin K	2.29 ± 0.71 mg (CV% 31)	2.6 mg
FS5	Monacolin K	2.44 ± 0.90 mg (CV% 36.88)	< 2.9 mg
FS6	Monacolin K	2.18 ± 0.91 mg (CV% 41.74)	< 2.9 mg

Integratori inefficaci e con effetti non riproducibili




Approccio ¹H qNMR non applicabile

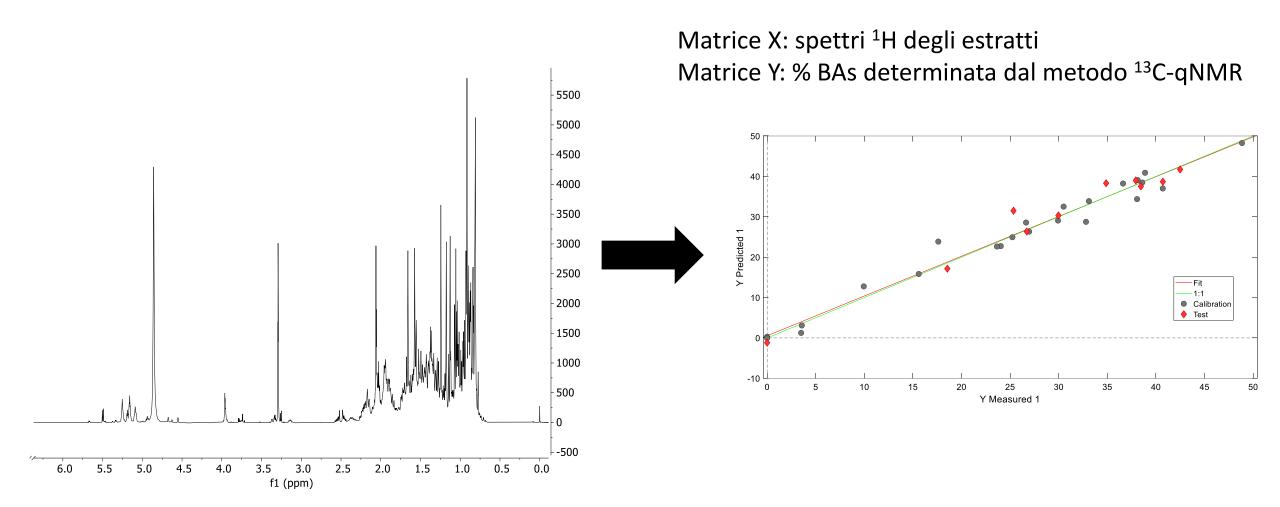
	R	R_1
β-boswellic acid	Н	Н
Acetyl-β-boswellic acid	Ac	Н
11-keto-β-boswellic acid	Н	=O
Acetyl-11-keto-β-boswellic acid	Ac	=O

Controllo qualità integratori alimentari - qNMR

Sequenza Bruker "zgpg_pisp_f2.fas", quantitativa (abbattimento dell'effetto NOE).

	R	R_1
β-boswellic acid	Н	Н
Acetyl-β-boswellic acid	Ac	Н
11-keto-β-boswellic acid	Н	=O
Acetyl-11-keto-β-boswellic acid	Ac	=0

Segnali risolti con i più «bassi» tempi di rilassamento → D1 50 sec, tempo di acquisizione totale 3h 37 min!!!


Approccio ¹³C-qNMR non conveniente rispetto a metodi cromatografici

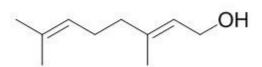
	αΒΑ	βВА	КВА	AKBA	ΑβΒΑ	ΑαΒΑ	Total BAs
ext1	4.90	9.54	3.22	2.46	6.83	1.73	28.68
ext2	6.12	12.58	3.56	2.24	6.01	3.77	34.27
ext3	6.42	13.19	4.13	2.74	6.33	<loq< th=""><th>32.80</th></loq<>	32.80
ext4	7.24	15.53	4.29	3.54	10.10	4.41	45.12
ext5	4.69	11.14	3.40	1.92	5.56	2.21	28.92
ext6	5.03	8.67	3.92	2.42	5.19	2.14	27.37
ext7	4.18	16.13	2.51	3.18	6.72	3.17	32.40
ext8	3.96	11.74	2.55	2.32	10.61	2.47	29.10
ext9	4.70	13.70	3.13	1.59	6.81	2.67	32.59
ext10	4.56	9.61	4.20	1.90	3.76	<loq< td=""><td>24.03</td></loq<>	24.03
ext11	3.37	6.42	3.07	1.79	3.89	<loq< th=""><th>18.53</th></loq<>	18.53
ext12	5.84	13.61	5.50	4.31	8.68	3.00	40.92
ext13	5.77	13.79	4.39	1.98	7.17	3.10	36.20
ext14	0.94	0.93	<loq< th=""><th>0.60</th><th>1.02</th><th><loq< th=""><th>3.50</th></loq<></th></loq<>	0.60	1.02	<loq< th=""><th>3.50</th></loq<>	3.50
ext15	6.47	9.20	3.94	2.57	7.79	3.38	33.35
ext16	6.36	14.57	5.19	3.16	9.17	3.18	41.62
ext17	8.13	14.63	4.10	4.39	9.46	3.14	43.84
ext18	1.53	0.41	0.59	0.71	0.32	n.d.	3.57
ext19	7.94	14.24	6.23	3.31	6.87	2.81	41.40
ext20	6.53	17.90	4.67	2.80	6.22	2.48	35.28
ext21	6.97	14.30	4.06	3.62	9.93	4.06	42.93
ext22	1.89	3.53	1.58	0.89	2.06	<loq< th=""><th>9.94</th></loq<>	9.94
ext23	4.30	8.66	2.86	1.98	5.84	4.04	27.68
ext24	2.66	5.22	2.01	1.76	3.95	<loq< th=""><th>15.60</th></loq<>	15.60
ext25	8.03	16.43	5.12	2.98	9.92	3.46	45.94
ext26	4.51	8.61	2.25	1.82	5.15	1.74	24.08
ext27	5.50	13.31	3.91	3.66	8.50	2.30	37.17
ext28	6.19	19.47	4.91	4.50	7.63	2.74	44.91
ext29	3.21	4.31	2.45	2.55	5.08	<loq< th=""><th>17.61</th></loq<>	17.61
ext30	7.45	20.03	5.57	6.22	9.57	3.73	52.58
ext31	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ext32	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ext33	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Titolo totale di BAs dichiarati dal produttore > 65%

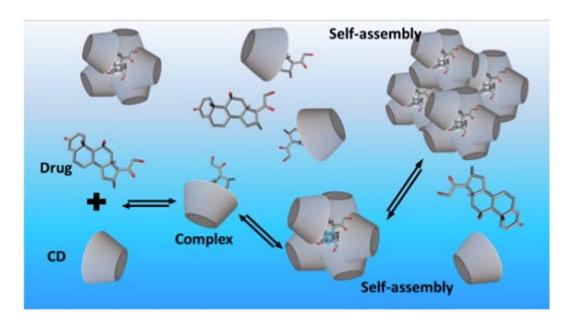
Abbiamo alternative per uno screening veloce??

Partial Least Squares Regression

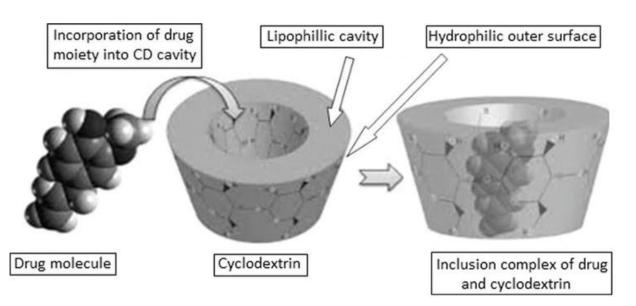
Il modello ci permette di quantificare velocemente (7 min) il contenuto totale di BAs in un campione incognito utilizzando lo spettro protonico


- Trasportare il principio attivo in specifici distretti del corpo;
- Aumentare la solubilità del principio attivo;
- Migliorare la biodisponibilità e incrementare le attività benefica.

Studio dell'interazione tra il veicolo (complessi di ciclodestrine, nano- o micro-particelle, liposomi ...) e il principio attivo è fondamentale per comprendere come i sistemi di veicolazione sono in grado di migliorare la somministrazione.


NMR può essere usato in diversi modi per lo scopo attraverso:

- 1. Shift dei segnali;
- 2. Effetto NOE;
- 3. Tempo di rilassamento.

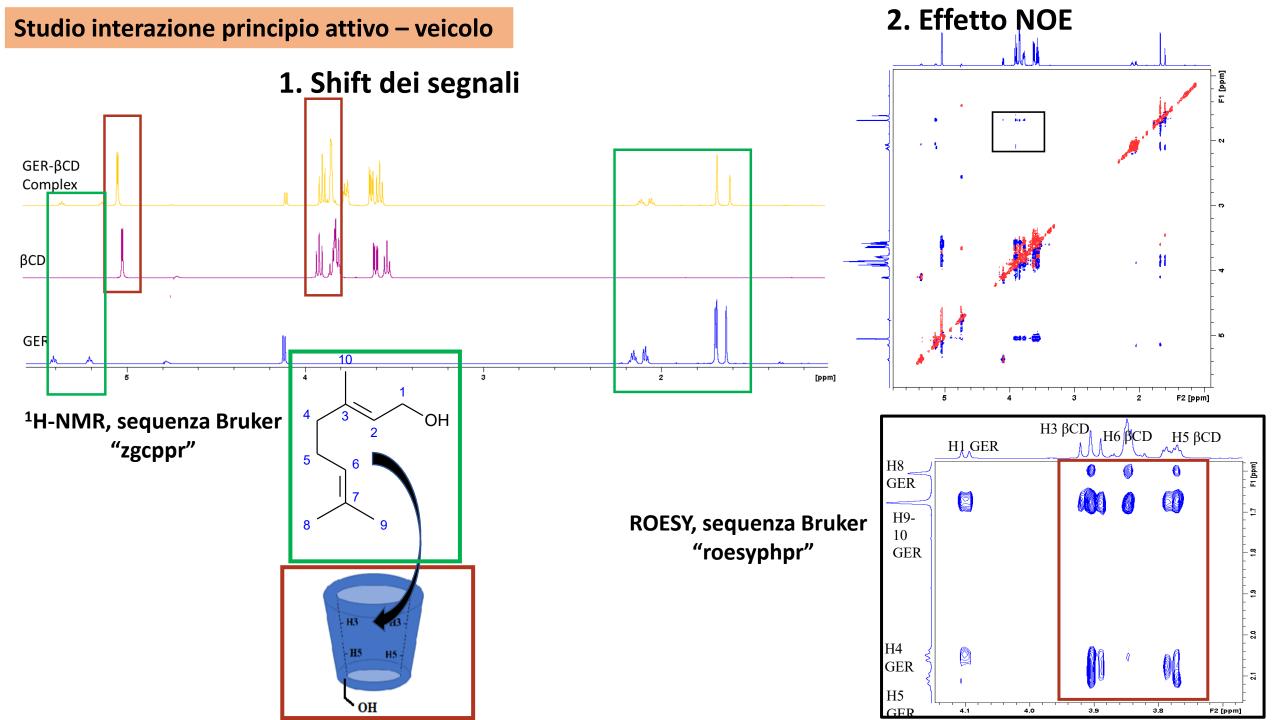

Geraniolo

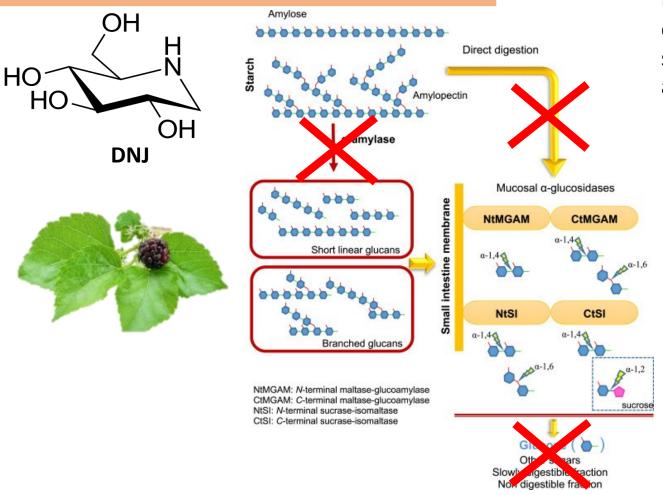
Complessi di inclusione/macrocomplessi

Complessi di inclusione

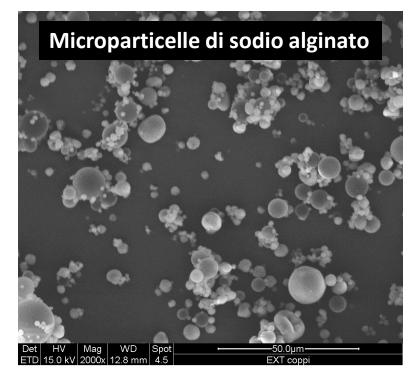
Contents lists available at ScienceDirect

Journal of Controlled Release


journal homepage: www.elsevier.com/locate/jconrel



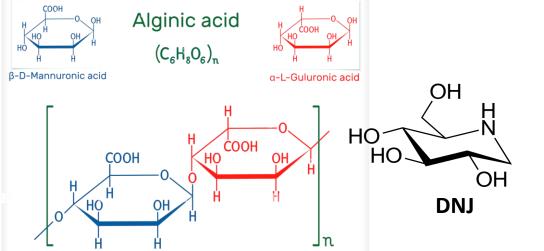
Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: physicochemical characterization and in vivo evidences of nose to brain delivery



Imminozucchero assorbito a livello intestinale ed eliminato velocemente dal circolo sistemico a causa della sua elevata solubilità in fluidi acquosi \rightarrow la sua azione sia a livello intestinale che sistemico è scarsa.

A contatto con il fluido intestinale si solubilizza prontamente, quando incorporato nelle particelle si solubilizza lentamente perché trattenuto dalle microparticelle.

→ azione del DNJ è prolungata nel tempo perché viene assorbito un po' per volta


Perché considerando l'alta solubilità dell'imminozucchero??

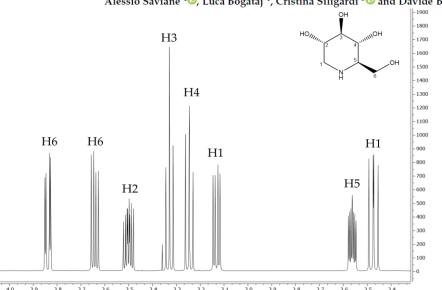
3. T1p (relaxation in the rotating frame)

Sequenza Bruker "t1rho_esgp2d"

Consigliato quando la mobilità delle molecule in soluzione è lenta e

si ha a che fare con macromolecule

La diminuzione del T1p suggerisce una ridotta mobilità del DNJ in soluzione → interazione tra specifici protoni del DNJ con il polisaccaride delle microparticelle

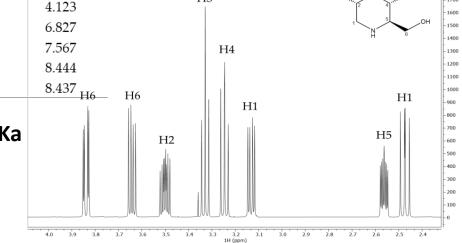


Arti

Alginate-Based Carriers Loaded with Mulberry (*Morus alba* L.) Leaf Extract: A Promising Strategy for Prolonging 1-Deoxynojirimicyn (DNJ) Systemic Activity for the Nutraceutical Management of Hyperglycemic Conditions

Lucia Marchetti ¹, Eleonora Truzzi ²,*, Maria Cecilia Rossi ³, Stefania Benvenuti ¹, Silvia Cappellozza ⁴, Alessio Saviane ⁴, Luca Bogataj ⁴, Cristina Siligardi ⁵ and Davide Bertelli ¹,*

DNJ	T1 _Q DNJ (s)	T1Q DNJ + ALG (s)	$\Delta(s)$
H1	0.535	0.440	-0.095
H1	0.663	0.530	-0.133
H2	1.760	1.390	-0.370
Н3	1.810	1.430	-0.380
H4	1.801	1.401	-0.400
H5	0.963	0.640	-0.323
Н6	0.679	0.548	-0.131
H6	0.680	0.517	-0.163


3. Tempo di rilassamento T1 (longitudinal relaxation time)

DNJ (mM)	2.47	H1 ppm s)	3.13	H1 ppm (s)	3.50	H2 ppm s)	3.33	H3 ppm s)	3.24	H4 ppm s)	2.56	H5 ppm s)	3.64	H6 ppm s)	3.84	H6 ppm s)
(IIIIVI)	DNJ	DNJ + ALG	DNJ	DNJ + ALG	DNJ	DNJ + ALG	DNJ	DNJ + ALG	DNJ	DNJ + ALG	DNJ	DNJ + ALG	DNJ	DNJ + ALG	DNJ	DNJ + ALG
4	0.671	0.545	0.781	0.597	2.422	1.438	2.505	1.934	0.818	0.523	1.468	1.048	0.827	0.618	2.542	1.742
5	0.670	0.538	0.784	0.560	2.382	1.346	2.501	1.837	0.817	0.523	1.469	0.963	0.820	0.592	2.533	1.569
10	0.662	0.559	0.771	0.604	2.337	1.532	2.440	2.036	0.806	0.579	1.432	1.061	0.808	0.630	2.463	1.810
15	0.666	0.580	0.774	0.607	2.347	1.607	2.459	2.075	0.811	0.597	1.435	1.071	0.814	0.637	2.468	1.861
20	0.661	0.584	0.770	0.605	2.324	1.739	2.431	2.124	0.806	0.616	1.422	1.080	0.806	0.650	2.440	1.893
25	0.654	0.584	0.760	0.637	2.212	1.780	2.323	2.090	0.794	0.669	1.403	1.070	0.787	0.695	2.386	1.860

					$(1/\Delta R)$	(s-1)				R = velocità	di rilassamento
	DNJ (mM)	H1 2.47 ppm	H1 3.13 ppm	H2 3.50 ppm	H3 3.33 ppm	H4 3.24 ppm	H5 2.56 ppm	H6 3.64 ppm	H6 3.84 ppm	it – velocita	di massamento
_	4	2.900	2.534	3.539	8.485	1.450	3.663	2.445	5.535	***	HO//, JOH
	5	2.730	1.960	3.095	6.919	1.453	2.796	2.129	4.123	H3	170
	10	3.600	2.789	4.448	12.297	2.056	4.095	2.860	6.827		1 5 OH 150
	15	4.492	2.813	5.097	13.288	2.262	4.222	2.929	7.567	H4	140
	20	5.040	2.823	6.900	16.819	2.613	4.491	3.358	8.444		-120
	25	5.420	3.936	9.114	20.837	4.260	4.508	5.945	8.437 _{H6} H	[6	H1

È possibile utilizzare questi risultati per determinare le costanti di associazione, Ka

$$L + M \rightleftharpoons LM$$
 $K_a = \frac{[LM]}{[L][M]}$

3. Tempo di rilassamento T1 (longitudinal relaxation time)

(1)

$$R_{obs} = p_f R_f + p_b R_b$$

pf: fraction of the free ligand

pb: fraction of the associated ligand

Rf: Relaxation rate in the free state

Rb: Relaxation rate in the associated state

Assuming that the fraction of the free ligand is far higher than that of the associated form

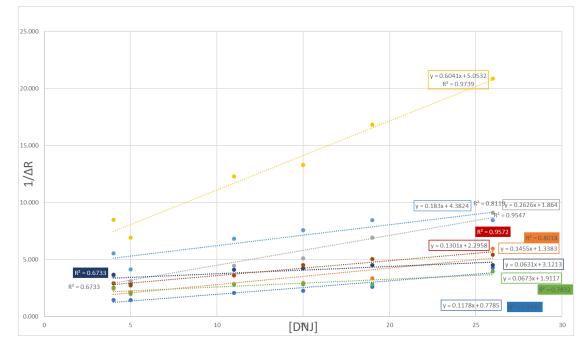
(pb <<<1), and taking pb + pf = 1:

$$\Delta R = R_{obs} - R_f \cong p_b R_b$$

The association constant Ka can be expressed as:

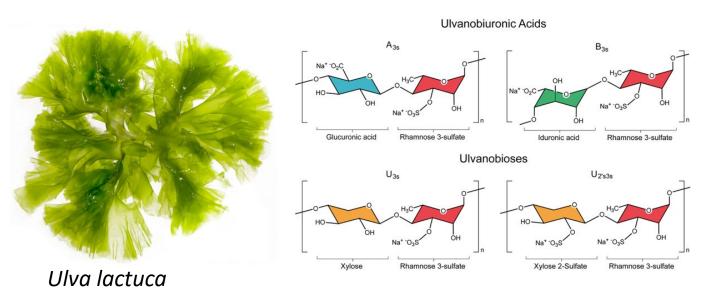
$$\zeta_a = \frac{[LM]}{[L][M]} = \frac{[LM]}{[L]([M_0] - [LM])}$$

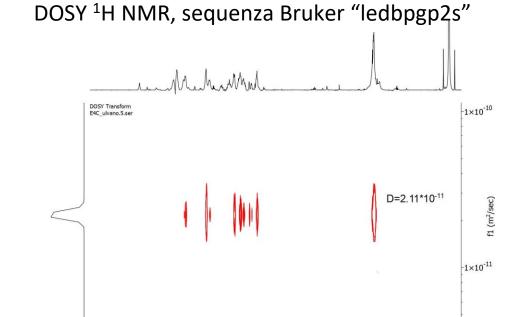
$$[LM] = \frac{K_a[L]M_0}{1 + K_a[L]}$$
(2)


$$\mathbf{R} = \text{velocità di rilassamento}$$
(3)

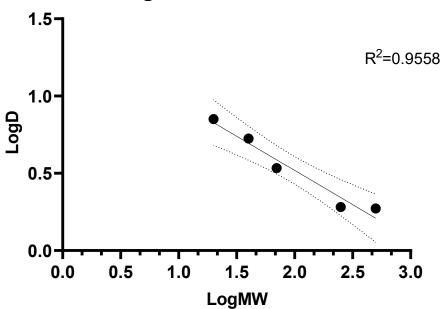
Where $[M_0]$ is the initial concentration of the macromolecule Since pb is the fraction of the associated ligand, then:

$$p_b = \frac{[LM]}{[L] + [LM]} \cong \frac{[LM]}{[L]} \tag{4}$$


Finally, by substitution of (3) in (4) and then in (1), the following equation is obtained:

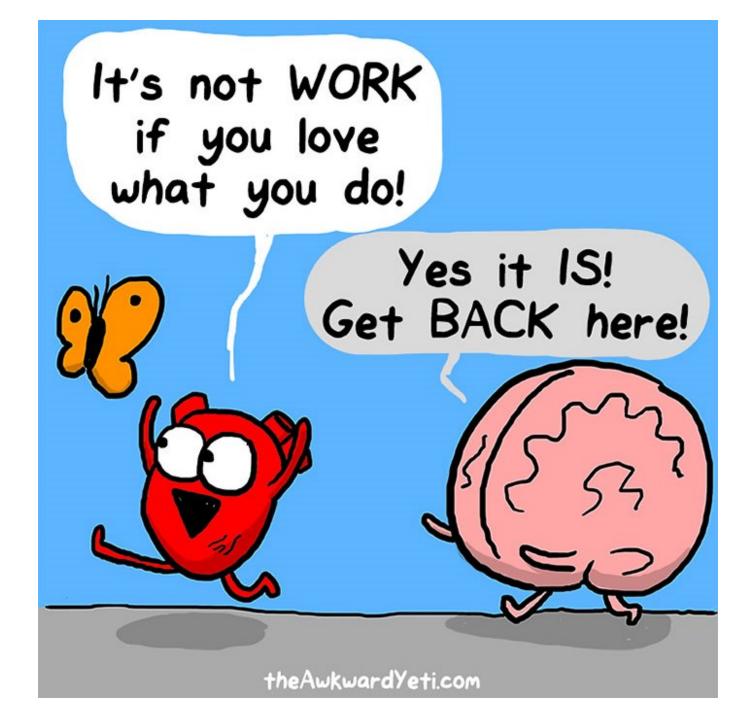

				1/ΔR				
DNJ (mM)	H1 2.47 ppm	H1 3.13 ppm	H2 3.50 ppm	H3 3.33 ppm	H4 3.24 ppm	H5 2.56 ppm	H6 3.64 ppm	H6 3.84 ppm
4	2.900	2.534	3.539	8.485	1.450	3.663	2.445	5.535
5	2.730	1.960	3.095	6.919	1.453	2.796	2.129	4.123
10	3.600	2.789	4.448	12.297	2.056	4.095	2.860	6.827
15	4.492	2.813	5.097	13.288	2.262	4.222	2.929	7.567
20	5.040	2.823	6.900	16.819	2.613	4.491	3.358	8.444
25	5.420	3.936	9.114	20.837	4.260	4.508	5.945	8.437
-1/Ka	-17.646	-28.406	-7.098	-8.365	-6.609	-49.466	-9.198	-23.948
Ka	57	35	141	120	151	20	109	42

Determinazione peso molecolare polimeri



Attività prebiotiche ed immunostimolanti correlate al peso molecolare

f2 (ppm)



187 kDa

Grazie

Prof. Davide Bertelli Dott.ssa Maria Cecilia Rossi

